
Performance Evaluation of NAS
Parallel Benchmarks on Intel Xeon Phi

Vienne, Ramachandran, Wijngaart, Koesterke, Shaparov

October 1, 2013
Lyon, France

ICPP
6th International Workshop on Parallel

Programming Models and Systems Software for
High-End Computing

Increasingly Complex HPC World
•  Mainframes

–  HPC language (Fortran, then also C) + vectorization (no caches!)

•  Clusters: MPI
•  SMP machines (shared memory): OpenMP + threads
•  Clusters with multi-core nodes: MPI + OpenMP

–  Vectorization + NUMA
•  Clusters with accelerators

–  Fast compute, high memory BW, limited memory
–  Data transfer through PCIe bus à Double buffering
–  GPUs: CUDA/OpenCL (partially mastered)
–  MICs: Standard languages + OpenMP

•  Evaluation of Phis through ‘standard’ benchmarks

How do we evaluate new technologies?

Programming and optimizing for MIC?

How hard can it be?
What performance can I expect?

The NAS Parallel Benchmark (NPB)

gives very valuable insight

Programming and Optimizing for the
MIC Architecture

•  Intel’s® MIC is based on x86 technology
–  x86 cores w/ caches and cache coherency
–  SIMD instruction set

•  Programming for MIC is similar to programming for CPUs
–  Familiar languages: C/C++ and Fortran
–  Familiar parallel programming models: OpenMP & MPI
–  MPI on host and on the coprocessor
–  Any code can run on MIC, not just kernels

•  Optimizing for MIC is similar to optimizing for CPUs
–  Make use of existing knowledge!

MIC Architecture
•  Many cores on the die
•  L1 and L2 cache
•  Bidirectional ring network
•  Memory and PCIe connection

Xeon Phi
•  ~60 cores
•  Few GB of GDDR5 RAM
•  512-bit wide SIMD registers
•  L1/L2 caches
•  Multiple threads (up to 4) per core

Xeon Phi in Stampede
•  SE10P
•  61 cores
•  8 GB of GDDR5 memory

MIC is similar to Xeon
•  x86 cores with caches
•  Cache coherency protocol
•  Supports ‘traditional’ threads

Phi architecture block diagram

MIC vs. GPU
•  Differences

–  Architecture: x86 vs. streaming processors
 coherent caches vs. shared memory

 and caches
–  HPC Programming model:
 extension to C++/C/Fortran vs. CUDA/OpenCL

 OpenCL support
Threading/MPI:
 OpenMP and Multithreading vs. threads in hardware
 MPI on host and/or MIC vs. MPI on host only
–  Programming details

 offloaded regions vs. kernels
–  Support for any code: serial, scripting, etc.

 Yes No

•  Native mode: Any code may be “offloaded” as a whole to
 the coprocessor

Adapting Scientific Code to MIC
•  Today: Most scientific code for clusters

–  Languages: C/C++ and/or Fortran,
–  Communication: MPI
–  may be thread-based (Hybrid code: MPI & OpenMP),
–  may use external libraries (MKL, FFTW, etc.).

•  With MIC on Stampede:
–  Languages: C/C++ and/or Fortran,
–  Communication: MPI
–  may run an MPI task on the MIC
 or may offload sections of the code to the MIC,
–  will be thread-based (Hybrid code: MPI & OpenMP),
–  may use external libraries (MKL),

 that automatically use MIC

Stampede Cluster at the

Texas Advanced Computing Center

What do we do with 6800 MIC cards?

How to program and optimize for MIC?

NAS Parallel Benchmark

•  Suite of parallel workloads
•  Testing performance of a variety of components
•  Computational kernels

–  IS: Integer sorting
–  FT: Fourier transform
–  CG: Conjugate gradient
–  MG: Multi-grid

•  Mini applications
–  BT & SP: Factorization techniques
–  LU: LU decomposition

•  Variety of sizes: class A, B, and C used
•  Parallelized with OpenMP & MPI

+

Evaluation

•  Timings à Flops
•  Ratio of active vector lanes to number of vector

instructions
–  VPU_ELEMENTS_ACTIVE
–  VPU_INSTRUCTIONS_EXECUTED
–  Vector width: 8/16 (DP/SP)

•  Reading from caches
–  DATA_READ_OR_WRITE

•  Missing caches
–  DATA_READ_MISS_OR_WRITE

•  TLB misses
–  DATA_PAGE_WALK, LONG_DATA_PAGE_WALK

+

Affinity and Scaling: IS

 0

 100

 200

 300

 400

 500

 600

 700

5 13 21 29 37 45 53 61 69 77 85 93 101
109

117
125

133
141

149
157

165
173

181
189

197
205

213
221

229
237

244

M
ill

io
n

of
 k

ey
s

ra
nk

ed

Number of OpenMP Threads

Balanced
Scatter

Compact

+
Number of Threads

61 122 183 244

Balanced
Scatter
Compact

M
ill

io
ns

 o
f ‘

op
er

at
io

ns
’

IS, class C

Balanced
provides best
performance

 0

 5000

 10000

 15000

 20000

 25000

 30000

5 13 21 29 37 45 53 61 69 77 85 93 101
109

117
125

133
141

149
157

165
173

181
189

197
205

213
221

229
237

244

To
ta

l M
FL

O
P

S

Number of OpenMP Threads

Class A
Class B
Class C

Performance: BT

+
Number of Threads

61 122 183 244

Class A
Class B
Class C

To
ta

l M
FL

O
P

S

BT, three sizes

Best number of
threads per core
derived by trial

Jumps at
‘natural’
boundaries and
in between
boundaries

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

5 13 21 29 37 45 53 61 69 77 85 93 101
109

117
125

133
141

149
157

165
173

181
189

197
205

213
221

229
237

244

To
ta

l M
FL

O
PS

Number of OpenMP Threads

Class A
Class B
Class C

Performance: CG

+
Number of Threads

61 122 183 244

Class A
Class B
Class C

To
ta

l M
FL

O
P

S

CG, three sizes

Best performance
at maximum
number of
threads

Xeon vs. Phi: 16 vs 61 cores

•  16 Sandy-Bridge cores are up to 2.5x faster
•  Best Phi performance to break even

+

Class C SB: time [s] SB: threads Phi: time [s] Phi: threads
BT 69 16 100 162
CG 22 32 57 241
FT 16 32 42 105
IS 1 32 2.4 177
LU 49 32 110 162
MG 7 16 6 172
SP 115 16 135 162

Analysis: Loop Iterations

•  Phi needs more loop iterations (concurrency, ‘n’)
for good performance
–  Either ‘n’ is a multiple of 61 or 122
–  Or ‘n’ is much larger than 122

•  Technique: loop collapse
–  BT, class A: 2x performance increase
–  BT, other classes: no gain; Larger sizes provide

already enough concurrency

+

Analysis: Division and Square Root

•  Divisions and square roots are ‘extra slow’ on Phi
•  Division consumes 25% of execution time in BT
•  Similar for square root in SP

+

Analysis: Strided Access

•  Strided access in BT (stride = 5)
•  Rearrangement of loop iterations did not

increase speed, because other loops changed
from stride-1 to stride-5

+

Analysis: Strided Access and
Vectorization

•  Non-unit stride access in LU
•  Loop vectorized by autovectorizer
•  Non-vectorized loop (-no-vec) faster
•  Gather/scatter load and stores
•  Reduced hardware prefetching

+

Analysis: Gather/Scatter vs. Masked
Load/Store

•  Access for low strides (stride-2) through 2
masked load/stores, instead of a gather/scatter

•  Test code revealed a 1.8x speed-up for
vectorized code

•  Hand-coded intrinsics

+

Analysis: Vectorization (general)

•  Some benchmarks (particularly MG) showed
good performance gain from vectorizations
–  MG faster on Phi than on Xeon

•  Most benchmarks performed better without
vectorization
–  Phi slower than Xeon

+

Analysis: Indirect Memory Access

•  Memory latency (main GDDR5) higher on Phi
than on Xeon (main DDR3)

•  Decreased performance for CG and IS

+

Summary

•  NBP gives very valuable insight
•  For code to perform well on Phi:

–  More concurrency required (more loop iterations)
–  Vectorization absolutely crucial
–  But not all vectorized code performs well
–  Stride-1 data access
–  No indirect data access
–  Manual hardware prefetching may be required
–  No ‘slow’ operations (div and sqrt)

•  Only certain codes will benefit from this generation of
Xeon Phi

+

Thank You!

Questions?

